
Stratway: A Modular Approach to Strategic Conflict
Resolution

George Hagen
∗

Ricky Butler
∗

Jeffrey Maddalon
∗

NASA Langley Research Center, Hampton, Virginia, 23601, USA

In this paper we introduce Stratway, a modular approach to finding long-term strategic

resolutions to conflicts between aircraft. The modular approach provides both advantages

and disadvantages. Our primary concern is to investigate the implications on the verifi-

cation of safety-critical properties of a strategic resolution algorithm. By partitioning the

problem into verifiable modules much stronger verification claims can be established. Since

strategic resolution involves searching for solutions over an enormous state space, Stratway,

like most similar algorithms, searches these spaces by applying heuristics, which present

especially difficult verification challenges. An advantage of a modular approach is that it

makes a clear distinction between the resolution function and the trajectory generation

function. This allows the resolution computation to be independent of any particular vehi-

cle. The Stratway algorithm was developed in both Java and C++ and is available through

a open source license. Additionally there is a visualization application that is helpful when

analyzing and quickly creating conflict scenarios.

I. Introduction

Automated airspace separation concepts perform two key functions: first, that aircraft conflicts must be
detected and, second, that safe and efficient resolutions to these conflicts must be found. The algorithms
that implements these functions are called conflict detection and resolution (CD&R) algorithms. Resolution
algorithms are further classified into two groups: tactical and strategic. A tactical algorithm determines
a resolution that is conflict free, usually with a single guidance maneuver, whereas a strategic resolution
produces not only a conflict free path, but one that also satisfies an ultimate objective such as reaching an
initial approach fix at the given required time of arrival. This paper describes a particular strategic conflict
resolution algorithm called Stratway.

A. Strategic Resolution

As a research effort, Stratway is designed to solve only part of the self-separation problem. Specifically, it is
assumed to operate in class A airspace for distributed self-separation concepts.3 In addition, Stratway works
under several engineering assumptions such as that the data provided to it is current and error-free.

In most cases, en-route airspace aircraft are required to maintain a separation distance from each other
of 5 nautical miles horizontally and 1000 feet vertically. An intrusion into this volume is a loss of separation

(LoS). A loss of separation that is predicted to occur within a certain lookahead time is a conflict. An
aircraft’s maneuver to avoid a conflict is a resolution. Avoiding collisions is considered a different problem.

Critical to both conflict detection and resolution is a model of the aircraft’s behavior. One such model
only relies on an extrapolation of the aircraft’s current position and velocity. This state-based model has
several advantages. First, the information is currently available in the Automated Dependent Surveillance

∗Research Engineer, Safety-Critical Avionics Systems Branch, Mail Stop 130

1

Broadcast (ADS-B) standard,13 and, due to an aircraft’s momentum, over a short time period this model
is very accurate. The relative simplicity of this model allows for strong verification of safety properties.
Finally, given typical traffic densities over short time horizons, an aircraft is rarely involved with more than
one conflict, which greatly simplifies algorithm design. Algorithms that use state-based trajectories provide
tactical resolutions, which involve a single guidance maneuver. However, tactical resolution algorithms do
not necessarily use state-based trajectories.

A major limitation of the state-based model is that planned turns and altitude changes, usually called
the “pilot’s intent,” are not accounted for and so these simple trajectories are not accurate over long time
horizons. This inaccuracy can lead to both false warnings, where an aircraft unnecessarily maneuvers to
avoid a conflict that does not exist, and missed alerts, where an aircraft does not recognize that there is a
conflict. This latter situation can result in a pop-up conflict where an aircraft makes a change in vertical
speed and does not realize that this maneuver will create a near-term conflict.

The desire for solutions for conflict detection and resolution over longer time horizons introduces new
issues. Over long time periods an aircraft could be involved in conflicts with more than one aircraft. Resolving
two or more conflicts requires a more complex maneuver. Furthermore, a pilot is not only interested in
avoiding conflicts—reaching the destination at the contracted time is also of high importance. In reaching
the desired destination, other constraints such as avoiding high traffic zones, adverse weather, and special use
airspace must also be taken into account. To address these issues, there is a desire for strategic resolutions,
where an aircraft does not make a single guidance maneuver, but rather can make complex changes to its
flight plan.

Because of the long time horizons involved in strategic resolutions, more information is needed about the
planned paths of each aircraft. This information is called the aircraft’s intent information. At a first level of
approximation, an aircraft’s intended path can be a sequence of 4-D points (say, a flight plan’s waypoints).
With appropriately large separation buffers even this coarse information can be useful for CD&R with intent.
However a suitably large separation buffer may introduce unnecessary capacity constraints. More precise
information about the aircraft’s intended path can come in the form of trajectory change points (TCPs) that
indicate the position, time, and details of a planned velocity change. Instead of traditional waypoints, which
may omit time or altitude information, TCPs include such information as the predicted beginning and end
of a climb or turn. Such intent information is included in the ADS-B standard although many manufacturers
do not implement this part of the standard. The use of intent information also introduces the possibility
that an aircraft will not conform to its intended path. Conformance issues are not addressed in this paper.

B. Motivation

Numerous conflict detection6 and resolution algorithms have been published in the literature.7 Both tac-
tical15 and strategic14 resolution algorithms have been published. A candidate comprehensive solution for
automated airborne separation is the Autonomous Operations Planner (AOP),1 which includes conflict de-
tection, tactical resolution, and strategic resolution algorithms.

The goal of our research with Stratway is to investigate a particular modular approach to build a strategic
conflict resolution system. The design philosophy of modules is to divide the functionality of the system into
clearly identifiable units with clear interfaces. Initially many complex algorithms use modules as a means
to divide the complexity of the problem into manageable units. However, strong interfaces tend to weaken
over time due to the need for flexibility or pressures on the development schedule. Our motivation is to
examine the modular approach from the standpoint of verification. Because the computer logic necessary for
automated aircraft separation is both highly complex and safety critical, verification of this logic is essential.

Because the solution space is so large for strategic resolutions, algorithms to find resolutions typically
employ heuristics to narrow the search space. Heuristics are generally incomplete, so potential solutions will
be missed. Due to this behavior, verification of the correct operation of a heuristic algorithm is particularly
challenging. Through a modular approach we aim to isolate the heuristic elements to ensure that their
ill-defined behavior does not impact the system’s safety argument.

Strategic conflict detection relies on accurate trajectories of the ownship and traffic aircraft. Intent based
trajectories are typically developed from two sources of information: the flight plan and the information

2

broadcast over ADS-B. An aircraft’s flight management system (FMS) can build a trajectory from a flight
plan and so similar functionality must be available to the CD&R system. Unfortunately this high-resolution
trajectory will not be available to traffic aircraft, so in these cases the trajectory must be inferred from
ADS-B information. To complicate matters further, there is not a universally accepted definition of what
comprises a trajectory. For these and other reasons, modular versions of strategic CD&R systems have not
been readily available.

In our work we are seeking to fill this gap by developing modules for key strategic CD&R functions. To
ensure the modules are not specific to one programming environment we have implemented them in both
Java and C++ with virtually identical behavior (i.e. up to floating point precision differences). Stratway
has a well-defined Application Program Interface (API) that can be called from other programs. We provide
this software in open source form.10 To aid in concept exploration the Stratway algorithm can also be
executed as a batch application or as an interactive visualization program that can display aircraft flight
plans and trajectories, graphically develop scenarios, and apply selective execution of individual Stratway
solution strategies.

Although the Stratway algorithm has been designed for airborne solutions for aircraft self-separation, it
is highly configurable to enable the exploration of the solution space for strategic CD&R systems, and it
has been used for centralized approaches.2 This configuration ability has allowed Stratway to be used in
studies of system-wide optimization5 and traffic flow management, as well as a resolver for “background”
traffic in human-in-the-loop simulations. The Stratway program has been integrated into several airspace
system simulators, including ACES11 and MACS.12

II. Reasons for Modularity

Verification is the process of ensuring that a system meets its specification. The conventional way to
verify that a system meets its specification is to engage in an extensive testing effort. There is always
the possibility, especially with complex systems, that problems exist that will not be revealed through
testing, since testing must be incomplete. With safety-critical systems, such problems can have disastrous
consequences. Mathematical verification is advantageous in that it forces the designer to both rigorously
specify the system and the desired properties and to ensure that the system specification is satisfied for all
input conditions. It is able to reveal unlikely errors that could easily be missed through testing or human
inspection. The process of verification can also reveal a deeper understanding of both the system in question
as well as the problem it is trying to address, possibly leading to new and better solutions. Two precursors
to verification are a well-defined interface and a clear statement of required functionality. Both of these can
be provided through a modular architecture.

From a verification standpoint, this makes a modular design highly desirable, but the verification of the
overall system can greatly depend on how these modules are defined. Modules could instead be specified
in such a way to emphasize performance or to address some other goal. Our decision with Stratway is to
create modules that facilitate the verification of safety properties. In our case, the ability to limit analysis
to relatively simple, internally complete units greatly enhances what can be proven about a system. In this
paper we discuss some of the consequences of this design decision in addition to describing the Stratway
application.

III. Stratway Solution Technique

A strategic CD&R solver takes aircraft intent information concerning the ownship and an arbitrary
number of traffic aircraft as input, and produces a series of maneuvers that will keep the ownship conflict
free, possibly constrained by such things as a final destination and arrival time.

Stratway works strictly with 4D points and the lines connecting them. We call this set of points for
an aircraft a plan, distinguishing it from a (predicted) trajectory or traditional flight plan. A plan can

3

be an abstraction of either of these, and the 4D points may have supplementary information that enables
Stratway to produce better solutions. As an example, some 4D points can be designated as immutable in
the horizontal, vertical, or time dimensions—e.g. a required time of arrival point would likely be fixed for all
three attributes. Great circle trajectories are addressed by internally breaking longer segments into smaller
ones.

By restricting the input plans to be piecewise linear functions, we are able to leverage the fast detection
modules developed for state-based solutions10 and extend them to include intent. Once a conflict has been
detected, the solution methods manipulate the original plans into new, conflict-free candidate plans, which
can then be either confirmed as feasible by the FMS, or converted back into an abstract flight plan to generate
a new trajectory.

Stratway uses a heuristic approach to resolve conflicts. Specifically, it assumes the input plans are close
to optimal and thus attempts to only make small changes to these plans. It also assumes that a plan with
multiple conflicts can be solved one conflict at a time. This means that multiple conflicts are usually solved
with multiple maneuvers. The advantage of this approach is that Stratway is always making progress towards
a solution. Finally, Stratway’s heuristic returns once the first solution is found—it does not find multiple
candidate solutions then order them by some cost function. In theory, such an approach could be added
to the Stratway algorithm. However, our concern is for safety, not optimization. The primary control the
user has on the optimality of the resolutions is that the order the resolution strategies are applied can be
changed.

In order to resolve conflicts, the Stratway program provides localized solution techniques, called strategies,
such as stretching an earlier leg to avoid a conflict after a turn, moving to a different altitude to pass over
or under a conflict, shortcutting turns, and several ways to maneuver around conflicts. Additionally there
are strategies for avoiding conflicts by adjusting speed, and other variations involving vertical changes. The
API to the program allows a calling program to select any subset of solution techniques or use the default
set. There are also many parameters that can be set to customize the solver. These include limits on how
sharp turns can be, the maximum percentage changes to the ground speed, minimum lead-in times, etc.

It is important to emphasize that the complexity of the problem can be arbitrarily high: there are many
ways that solutions can be constructed, such as using path stretches (of different lengths), step climbs (at
different altitudes), removal of waypoints, and time changes, among others. Because of this complexity it
is possible that a solver such as Stratway may not be sophisticated enough to find a resolution within a
reasonable amount of time. And, in the cases of extreme congestion, there is the possibility that an aircraft
may simply have no feasible resolutions available—other functions as part of the self-separation concept must
ensure that an airspace volume will never become this crowded.

A. Internal Architecture

Internally, Stratway consists of three major components: a main interface loop, an intent-based conflict
detection module (Detector), and an expandable set of strategies that perform localized resolutions. These
components are illustrated in Figure 1. As can be seen in that diagram, a set of ownship and traffic plans
are input into Stratway, and the ownship plan is analyzed for conflicts. When one is detected, the set of
plans, along with information about the conflict, are passed to the strategies.

Stratway’s modular decomposition for verifiability is shown in Figure 1. The heuristic search is encap-
sulated in the strategies. Although these strategies have a well-defined interface, their behavior is much
less well defined. Ill-defined behavior is difficult or impossible to verify. Therefore we side-step this issue
through the modular decomposition. Since the strategies themselves cannot be verified, instead we place a
verifiable “checker” on their output. This checker is the intent-based conflict detection module (Detector).
Furthermore, since the main loop is routing data among the solutions, it must also be verified. Due to
Stratway’s modular nature, only the Detector and the main loop components are safety critical.

Stratway returns a plan and status. If the status is “conflict-free,” then the returned plan will indeed
be conflict free. Otherwise the returned plan represents a partial solution that may have resolved some
(but not all) conflicts. Typically Stratway will return a single revised ownship plan representing the first

4

Safety Critical Components

Strat−1

Strat−2

Strat−n

...

Main Loop

Strategies

Ownship
Ownship

Stratway

(CDII)

Conflict?
T/F

Conflict?
T/F

Plans
Plans

Plan

Plans

Plans

Plan & Status

Conflict Detector

Figure 1: Data Flow in Stratway.

discovered solution. As we are primarily concerned with safety, considerations such as flight efficiency (fuel
consumption, etc.) are not directly addressed.

Strategies are given a user-defined ordering and are applied against each conflict in turn. This allows
the user, for example, to indicate a preference for track-based solutions over vertical ones, or only consider
resolutions that make left-hand turns. If a strategy fails to resolve a conflict (as well as any secondary
conflicts), the next strategy is attempted. Once a solution has been found for all conflicts, the detector is
run again, against the entire revised ownship plan, and if it is truly conflict free, it is returned as a solution.

Stratway also allows a user to investigate several strategy orderings as a single query. This simply loops
through the sets of orderings and returns a normal solution for each, allowing the user to then choose the
resolution that was most favorable.

B. Detection

Detection in Stratway is based on the CDII algorithm from the ACCoRD framework.10 CDII extends a
verified state-based Euclidean pairwise conflict detection algorithm to allow for intent information for both
the ownship and traffic aircraft. Stratway’s Detector object itself extends CDII to simultaneously function
on an arbitrary number of traffic aircraft plans. In addition, it transparently acts to mitigate inaccuracies
in geodetic-to-Euclidean projections on longer flight legs.

Given a set of plans, the Detector object is able to return the number of conflicts that involve the ownship.
For each of these conflicts, it is also able to provide both the time into and time out of conflict, as well as
the time of closest approach and the projected horizontal and vertical separation.

C. Resolution Strategies

We have developed numerous resolution strategies for use in Stratway. As mentioned above, Strategies
generally provide localized solutions, and are typically iterative in nature. For example, a climb to avoid a
conflict might be gradually increased to higher and higher altitudes, until the immediate region is conflict
free (a success) or until some pre-determined cutoff is reached (a failure). Each strategy applies a local
search by introducing, deleting, or modifying one or more points in the plan around the conflict. In a
few cases this manipulation is determined analytically, but usually iteration is used to make progressively

5

larger adjustments to points to avoid secondary conflicts when re-capturing the plan. Several strategies are
approximations of AOP’s pattern-based resolutions.14

C

A B

conflict

Figure 2: rrTrk Strategy

One simple example is a strategy we call rrTrk, shown in Figure 2. This strategy avoids a conflict by
diverting the ownship to either the left or right, flying around the traffic aircraft through a new point. It first
ensures that the conflict is isolated by two points (A and B in the figure). It then introduces a third point
(C) between A and B. An analysis of the conflict is used to determine an initial direction and heading, and
point C is gradually moved along the heading until both the avoidance and return segments are conflict-free.
This, like most other strategies, assumes the original plan was near optimal by some measure, and attempts
to minimize changes.

By default Stratway uses a backtracking search when generating a sequence of resolutions. If no strategy
can solve a given conflict, there is the chance that using a different solution to an earlier conflict will change
the current circumstances sufficiently that it becomes solvable. Stratway will return to an earlier (successful)
resolution and apply untried strategies before re-attempting the current conflict. This allows all combinations
of strategies to be attempted before returning a failed status.

IV. A Modular CD&R Architecture

As mentioned previously, Stratway has been designed specifically to be a modular unit, intended to be
incorporated into larger systems, such as human-in-the-loop airspace simulations. This choice also affects
our ability to verify safety properties about the system: it allows us to produce code that, by decoupling
components, encourages simplicity of modules, and that facilitates eventual verification of safety properties
of these modules. This philosophy also extends to Stratway’s place in a larger system.

This decision, while it facilitates verification, does come at some cost. Not only has there been increased
design effort in creating well-defined interfaces, but there are also trade-offs in performance.

A. Incorporation in a Airborne Application

For reference, a typical decomposition of the relevant current avionics would probably be similar to that in
Figure 3. This includes transmission of ADS-B information, which in the case of most currently available
systems is the ownship state information. Our concern with Stratway is in adding self-separation capabilities.

A natural approach might be to add self-separation as a capability of an already existing flight manage-
ment system (FMS). In Figure 4 we illustrate a monolithic self-separation system and the context that it
operates within, as may be typical in a research application. This design allows the use of the FMS’ trajec-
tory generation functionality to be directly linked to the separation assurance logic, which provided several
advantages. Primarily, it can allow the constraints from both systems to be applied at once, granting the
ability to generate a (possibly optimized) conflict-free trajectory in a single pass. There is also the potential
benefit of utilizing accurate information that is privy to the ownships’ local avionics.

6

The "Aircraft"

Control
System

Guidance Aircraft

Guidance
cmd

Actuators

Control commands

Flight Plan

FMS

Comm
(Tx)

System

Pilot

intent (target state)

Figure 3: Current avionics architecture.

Guidance

Control commands

The "Aircraft"

Flight Plan

Control Aircraft

Guidance
cmd

Aircraft specific
parameters

Aircraft state
parameters

(Rx)

Comm

(Tx)

Comm

System ActuatorsTrajectory Generation /

FMS

Self−separation System

TCP processing:

TCP

to Traj

Traj to

TCP

Pilot

System

Figure 4: Monolithic Architecture Data Flow

7

This, however, makes it extremely easy to tightly tie the separation assurance logic to a particular FMS,
and since separation assurance is a safety critical function, the entire FMS then becomes a safety-critical
system and needs to be certified as such. Mathematically proving useful safety properties of such a complex
system is often beyond the capabilities of current verification techniques. In addition to the increased
difficulty of needing to deal with irrelevant data (and figuring out what data is irrelevant), important data
may be scattered throughout the larger system, and the relation between two pieces of relevant data may be
highly obscured. Specific to verifying separation properties, it is necessary to untangle FMS- and trajectory
generation-specific functionality from that needed for aircraft separation.

Traj to

The "Aircraft"

Control
System

Aircraft

Guidance
cmd

(own)

Aircraft specific
parameters

Aircraft state
parameters

to Traj
TCP

(Rx)

Comm

(traffic)

TrajGen
TCP

trajectory

TrajGen

(Tx)

Comm

Actuators

Self−sep
System

Control commands

trajectory

Flight Plan

FMS

trajectory

New
Trajectory

Guidance
System

Pilot

Figure 5: Modular Architecture Data Flow

In contrast, our approach with Stratway is a modular architecture where the trajectory generation func-
tion (or plan generation function, in our case) is decoupled from the separation assurance logic. Trajectory
generation could still be based on FMS algorithms, but this would need to be made accessible via an inter-
face, and could be treated as a separate component. An example of this architecture can be seen in Figure 5.
A more detailed example of the separation assurance subsystem can be seen in Figure 6.

to

TCPs

TCP

Generator

resolution

Traffic

Trajectory

(Stratway)
Strategic Resolver

Tactical Resolver

(backup)

Self−separation System

Reconnect

OwnShip
Flight Plan

Trajectory

GeneratorGenerator

(Traffic) iteration

Flight Plan

Figure 6: Important CD&R functions and their basic relationships

Such a modular approach also provides advantages. First, it provides improved testability and verifiabil-
ity. The modules can be tested and verified separately, which is much simpler and far more effective than
testing the full system. The verification of self-separation properties need not depend on the particulars of
how a trajectory comes about, only its description of movement through space. Furthermore, the strategic

8

and tactical components of such a system can be completely independent, allowing, say, a state-based back
up tactical system that can be strongly verified.

Having a well-defined generic interface to modules also decreases system complexity and can reduce
the long-term software maintenance cost. The overall reliability of software is also improved by decreasing
complexity. Additionally, the modular structure and well-defined interfaces allow it to be reused in other
places. Finally, this approach allows the CD&R functionality to work for many different aircraft.

Decoupling the CD&R functionality from the trajectory generation capability of the FMS, however, is
also a source of a major disadvantage to this approach, depicted as the red loop in Figure 6. This means
that a less accurate plan/trajectory will be generated within the CD&R system and, consequently, another
call to the FMS may be necessary to refine the final trajectory to something that is feasible for the aircraft.
This in turn may re-introduce conflicts, requiring another pass with the separation assurance system, and so
on. Hopefully this would converge into a realistic conflict-free trajectory within a few iterations, but, if not,
something would need to be done to prevent an endless loop. One possibility would be to keep a history of
previous resolutions and compare them to the current one in order to ensure that each iteration is different.
Another potential solution could be to simply let the strategic solver fail after a fixed number of attempts,
either to see if traffic aircraft alter their plan sufficiently to allow it to succeed later (if the conflict is far
enough in the future), or allow a tactical resolver produce a short-term solution.

Although there are advantages and disadvantages to both approaches, we believe that improved veri-
fiability, increased reliability, and reusability are more important than increased performance, so we favor
the modular approach. We also believe that there are ways of compensating for less accurate trajectories
produced within the CD&R module. A simple solution we use in Stratway is to allow the user to specify the
size of buffers used for detection and resolution separately. If the user sets a larger resolution buffer, this
ensures that any resulting plan modifications include extra space for avoiding traffic aircraft. Some work has
been done in determining the appropriate size for such buffers in the face of uncertainty.4

In an airborne context, there is also the constraint of an aircraft’s forward momentum. If there is a
nearby conflict, Stratway handles this by delaying any resolutions a short time. Instead of possibly returning
an immediate (and physically unachievable) velocity change, Stratway will instead create a fixed point a
short time in the future (30 seconds, by default) along the current path, ensuring that any resolutions allow
the pilot some time to actually complete a suggested maneuver.

B. Aircraft Trajectories

For purposes of conflict detection and resolution, we want estimated trajectories that are accurate, especially
with respect to turns, climbs and descents. But turn and climb dynamics can vary depending on the type
of aircraft. This creates a basic dilemma: if a very accurate trajectory is pursued, then the strategic
CD&R system can be locked into a particular aircraft and a particular flight management system. But if
a generic approach is pursued, whereby a large class of aircraft can be accommodated, then the trajectory
will inevitably be less accurate.

We have sought to make Stratway as independent of a particular trajectory generator as possible. Since it
is not tightly coupled to any particular trajectory generation algorithm, Stratway takes a proposed trajectory
(in the form of a plan) and produces a candidate conflict-free abstract trajectory (another plan). These can
then be re-submitted to the external trajectory generator to generate a more accurate trajectory, which
could itself be checked for conflicts. More complex trajectory generators could be developed as needed.

Regardless of the amount of information that one has about his or her own aircraft, the information
about the traffic aircraft is necessarily limited. The strategic CD&R system must rely on information that is
broadcast for the traffic aircraft. This in turn requires that a common trajectory specification language be
developed. In the airspace arena this language is the language of Trajectory Change Points (TCPs).13 These
are broadcast within the ADS-B Trajectory Change Report (TCR). The information contained in the TCR is
a subset of the information available to the ownship and so it is more inaccurate than the ownship trajectory
models. Each TCP defines a leg of the trajectory, which is a path segment, possibly curved, that ends at a
a specified TCP. Typical TCPs include Direct to Fix, Course to Fix to Fly-By-Turn, Target Altitude, Top

9

of Climb, etc. A precise semantics for these TCPs will be necessary to ensure that the verification of the
CD&R system is sound.

One important aspect to consider for real-world systems is that ADS-B information is, because of band-
width restrictions, degraded in quality, and traffic trajectories need to be reconstructed from this information.
This may produce an asymmetry in conflict calculations, where more precise ownship trajectories may lead
one aircraft to detect a potential conflict, e.g. in a parabolic instead of circular turn, that is missed by its
counterpart. A procedure that relies heavily on consistent world information could be negatively affected by
such a situation.

Whether this is an important problem or a minor inconvenience deserves further study. One could easily
argue that such a conflict would be borderline, and so at worst only be a negligible intrusion into a large
protection zone. Another possible solution would be to implement flight rules such that any aircraft that
detects a potential conflict must maneuver to avoid it. Another possibility is for all aircraft to use the
same degraded ADS-B information (and reconstructed trajectories) for both traffic and ownship for such
procedures.

C. Stratway in a Centralized Application

The primary focus of Stratway has been in an airborne based self-separation concept. However it may also
be used for de-conflicting aircraft traffic in a centralized system approach, such as part of a traffic flow
management system. Since trajectory generation in these systems is not likely to be tightly tied to specific
aircraft flight management systems (and high-fidelity trajectories may not be a priority for centralized
applications like traffic flow management), plans could be generated with little effort.

In this case a single copy of Stratway may simply be called multiple times, once for each aircraft in a set,
assigning each as the ownship in sequence. By default Stratway attempts to deconflict entire plans, so little
else need be here done except to ensure that the origin and destination locations are fixed as immutable.

Note, however, that Stratway does not take advantage of the fact that the larger system has (near)
universal knowledge of the airspace—it is still based on de-conflicting the path of a single aircraft. Since
only one aircraft maneuvers at a time, Stratway is not likely to discover any solutions that are globally
optimal with respect to any cost function except safety.

V. The Visualization Environment

Around the core Stratway module we have also created visualization software in Java. This provides a
graphical user interface (GUI) to aid in developing strategies as well as easily generating and visualizing
scenarios of interest. Once created, a scenario can then be examined at any point in time during the
ownship’s flight. This tool has been used in the development of HITL experiments, as the GUI allows for a
simple means of generating 4D plans and then modifying them to produce conflicts. These scenarios can be
developed completely by hand with a mouse or input as simple text files.

The Stratway visualization consists of a primary window that shows a top-down view of various plans
(Figure 7a). Points in a plan are indicated by colored dots, with legs between points indicated by corre-
spondingly colored arrows between sequential points. The user can open a secondary window that displays
a vertical view of the scenario (Figure 7b), as well as polar and projection-centered views. These displays
also visualize potential conflict information in the form of a reticule (around the ownship’s current position)
and vertical bars indicating the ownship’s conflict prevention bands9 as well as details of detected conflicts
in the form of a heavier “dog bone” bar at the location of the conflict. Supplementary information can also
be provided about the various plans and aircraft. Figure 7 shows an impending conflict between the ownship
(blue and, for the current segment, red) and traffic aircraft (green). The ownship’s current position is the
red dot surrounded by a circle; it is flying in an easterly direction while descending. The traffic’s position
is the grey dot slightly above then center of the display; it is flying southeasterly while descending. In this
situation, the ownship will pass over the traffic aircraft too closely, creating a conflict. The reticule (for track
changes) and bars (for ground and vertical speed changes) indicate the consequences of potential tactical

10

(a) Primary Display (b) Vertical View

Figure 7: Stratway Visualization

maneuvers: maneuvering into green regions will avoid conflict with any traffic, while red regions will lead to
a conflict in the next few minutes.

There is also preliminary support for no-fly zones that may represent weather or special use airspace, as
shown in Figure 8. This figure displays a scenario where several aircraft are flying to and from a central
hub, with a series of disruptive weather cells, represented by moving polygons, passing through the area.
Here the ownship will need to maneuver twice to avoid an area of inclement weather, once in the immediate
future, as well as after it has passed through the hub.

Figure 8: Weather Polygons in Stratway (background image credit NASA Visible Earth)

Strategies can be implemented individually or in a similar batch mode to the API interface, and all API
parameters and functionality can be accessed through the GUI. For the example in Figure 7, the default
batch resolution is to delete one of the intermediate points, effectively lowering the ground speed of the
ownship and allowing the traffic to pass in front of it. In the case of Figure 8, the default solution for
avoiding the initial weather zone is to climb over it, while the second (after passing through the hub) is to

11

divert the ownship around it.

Scenario generation is a simple matter of sketching out plans with a mouse and then tweaking them to
achieve the desired results. Points can be manipulated individually, or entire plans can be modified at once,
and tools are available to help visualize the bounds of conflicts.

VI. Verification and Future Work

We have made efforts to design Stratway in such a way that it is verifiable. Central to this is our modular
approach. Key components can be separated from the larger system and it will be easier to prove properties
about those components. Verification of the system is a long-term goal, and has not been completed, but
the architecture we have chosen will allow us to still make statements about the overall system with high
degrees of assurance even if the eventual verification does not take into account every line of code.

Because of our heuristic approach to the resolution problem, in our future work we will not attempt to
say that Stratway is complete—there is always the possibility that a resolution is missed. Our goal, instead,
will be to show that the system is correct—if Stratway provides a solution, there will be a high degree of
assurance that the resolutions provided will indeed produce conflict-free plans.

Key to achieving this goal is the simple idea of filtering. If we verify this property for the conflict detection
module, then we are able to check any proposed solutions with this module as a final step and reject any
that still contain conflicts. By doing this we will be able to say that any solution provided by Stratway is,
indeed, conflict free. Although this approach ensures that Stratway will never produce an unsafe solution, it
allows that Stratway may not produce any solution. In this case something outside of Stratway must ensure
that a resolution is produced by another algorithm: perhaps a tactical intent-based resolution algorithm15

or a state-based algorithm.8 In the event that Stratway is unable to produce a conflict-free resolution, it is
left to some other system (such as a tactical resolver) to solve the problem.

Another design choice driven by the goal of verifiability is to emphasize simplicity in our algorithms. The
basic algorithms all use Euclidean geometry and are all, ultimately, based on simple vector arithmetic and
a bit of set theory, avoiding transcendental functions whenever possible—trigonometric functions only come
into play when a result needs to be output as a track angle.

Much work has already been done with this goal in mind, and much of the core of the detector algorithms
has already been proven to be both complete and correct for Euclidean systems with perfect state knowledge.
There is still work to do in this area, however. We hope to eventually also provide proofs involving multiple-
aircraft detection, as well as the correctness of various ancillary computations (time of closest approach,
etc). Further goals include proving properties of the projections used to transform geodetic coordinates to
Euclidean, as well as proofs based on the actual code base as opposed to the algorithms it is based on.

VII. Summary

This paper presents a strategic conflict detection and resolution application called Stratway. We have
chosen a modular design that is decomposed in such a way to facilitate verification of safety properties.
A modular approach allows us to examine each simpler component, keep relevant data segregated, and
compositionally prove properties for the larger system. Although the full system has not been fully verified,
much work has been already done in verifying several key algorithms. An additional benefit is that, in
decoupling the CD&R functionality from the trajectory generation functionality, we are able to create a
generic system that is not tied to any particular flight model. In this paper we have detailed several of the
ramifications of this design decision.

Stratway itself is a self-contained module not tied to any particular trajectory generator. It has an open
source application programming interface, with both Java and C++ code available, allowing it to be used
in other systems. It may also be used as a stand-alone system, and has a graphical user interface designed
to quickly and easily sketch out air traffic scenarios for use in experimentation. Stratway has been used in
several experiments both for scenario design and as a CD&R system, and has been integrated into several
larger simulations, including ACES and MACS.

12

References

1M.G. Ballin, V. Sharma, R.A. Vivona, E.J. Johnson, and E. Ramiscal. A flight deck decision support tool for autonomous
airborne operations. In AIAA Guidance, Navigation and Control Conference, Monterey, CA, 2002.

2Matthew S. Bigelow. Examining the relative costs and benefits of shifting the locus of control in a novel air traffic
management environment via multi-agent dynamic analysis and simulation. Master’s thesis, Georgia Institute of Technology,
May 2011.

3Vincent Capezzuto. Application Integrated Work Plan. Technical report, FAA, June 2010.
4Heber Herencia-Zapana, Jean-Baptiste Jeannin, and César Muñoz. Formal verification of safety buffers for state-based

conflict detection and resolution. In Proceedings of 27th International Congress of the Aeronautical Sciences, ICAS 2010, Nice,
France, 2010.

5Carolyn Kaplan, Johann Dahm, Elaine Oran, Natalia Alexandrov, and Jay Boris. The monotonic lagrangian grid for
rapid air-traffic evaluation. In 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Fort Worth,
Texas, Sept 2010. AIAA 2010-9336.

6D. Karr, D. Roscoe, and R. Vivona. Conflict detection using variable 4D uncertainty bounds to control missed alerts. In
AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado, Aug 2006.

7J. Kuchar and L. Yang. Survey of conflict detection and resolution modeling methods. In AIAA Guidance, Navigation,

and Control Conference, pages 1388–1397, New Orleans, LA, August 1997. AIAA-97-3732.
8César Muñoz, Ricky Butler, Anthony Narkawicz, Jeffrey Maddalon, and George Hagen. A criteria standard for conflict

resolution: A vision for guaranteeing the safety of self-separation in NextGen. Technical Memorandum NASA/TM-2010-216862,
NASA, Langley Research Center, Hampton VA 23681-2199, USA, October 2010.

9Anthony Narkawicz, César Muñoz, and Gilles Dowek. Provably correct conflict prevention bands algorithms. Science of

Computer Programming, 2011. In Press.
10NASA. Airborne coordinated conflict resolution and detection (ACCoRD), 2011.

http://shemesh.larc.nasa.gov/people/cam/ACCoRD/.
11NASA. Airspace concept evaluation system (ACES), 2011. http://www.vams.arc.nasa.gov/activities/aces.html.
12Thomas Prevot and Joey Mercer. MACS: a simulation platform for today’s and tomorrow’s air traffic operations. In

AIAA Modeling and Simulation Technologies Conference, Hilton Head, South Carolina, Aug 2007. AIAA 2007-6556.
13RTCA SC-186. Minimum Aviation System Performance Standards for Automatic Dependent Surveillence Broadcast

(ADS-B). RTCA, 2002.
14R. Vivona, D. Karr, and D. Roscoe. Pattern-based algorithm for airborn conflict resolution. In AIAA Guidance,

Navigation, and Control Conference, Keystone, Colorado, Aug 2006. AIAA-2006-6060.
15D.J. Wing, R.A. Vivona, and D.A. Roscoe. Airborne tactical intent-based conflict resolution capability. In 9th AIAA

Aviation Technology, Integration, and Operations Conference (ATIO), Sept 2009.

13

